CONSUMER CONFIDENCE REPORT Report Covers Calendar Year: January 1 – December 31, 2016 Este informe contiene informactión muy importante sobre el aqua usted bebe. Tradúscalo ó hable con alguien que lo entienda bien. #### I. Public Water System (PWS) Information | PWS Name: | Highland Pines Domestic Water Improvement District | | | | | | | |--|--|--|--|--|--|--|--| | PWS ID# | AZ04- 13034 | | | | | | | | Owner / Opera | Owner / Operator Name: James C. Muylle | | | | | | | | Telephone # | e# 928-713-9397 Fax # 928-583-0479 E-mail jmuylle@cableone | | | | | | | | We want our valued customers to be informed about their water quality. If you would like to learn more about public participation or to attend any of our regularly scheduled meetings, please contact James C. Muylle at 928-713-9307 for additional opportunity and meetings dates and times | | | | | | | | # **II. Drinking Water Sources** The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Our water source(s): City of Prescott ### **III. Consecutive Connection Sources** A public water system that receives some or all of its finished water from one or more wholesale systems by means of a direct connection or through the distribution system of one or more consecutive systems. Systems that purchase water from another system report regulated contaminants detected from the source water supply in a separate table. PWS ID # AZ04 -13045 provides a consecutive connection source of water. ## IV. Drinking Water Contaminants <u>Microbial contaminants</u>, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. <u>Inorganic contaminants</u>, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities. ## V. Vulnerable Population Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and microbiological contaminants call the EPA *Safe Drinking Water Hotline* at 1-800-426-4791. #### VI. Source Water Assessment If the public water system received a Source Water Assessment (SWA), include a brief summary of the susceptibility as summarized in the SWA report. Further source water assessment documentation can be obtained by contacting ADEQ, 602-771-4641. ### VII. Definitions AL = Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements. MCL = Maximum Contaminant Level - The "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water. MCLG = Maximum Contaminant Level Goal - The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. MFL = Million fibers per liter. MRDL = Maximum Residual Disinfectant Level. MRDLG = Maximum Residual Disinfectant Level Goal. $\underline{MREM = Millirems\ per\ year} - a$ measure of radiation absorbed by the body. NA = Not Applicable, sampling was not completed by regulation or was not required. NTU = Nephelometric Turbidity Units, a measure of water clarity. $\underline{PCi/L} = \underline{Picocuries\ per\ liter} - \underline{picocuries\ per\ liter}\ - \underline{picocuries\ per\ liter}\ is\ a\ measure\ of\ the\ radioactivity\ in\ water.$ <u>PPM = Parts per million</u> or Milligrams per liter (mg/L). $\underline{PPB} = \underline{Parts \ per \ billion} \ or \ Micrograms \ per \ liter \ (\mu g/L).$ ppm x 1000 = ppb ppb x 1000 = ppt ppt x 1000 = ppq PPT = Parts per trillion or Nanograms per liter. <u>PPQ = Parts per quadrillion</u> or Picograms per liter. TT = Treatment Technique - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water. # VIII. Health Effects Language **Nitrate** in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods-of-time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider. If arsenic is less than or equal to the MCL, your drinking water meets EPA's standards. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. Infants and young children are typically more vulnerable to **lead** in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested. Flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the EPA *Safe Drinking Water Hotline* at 1-800-426-4791. Consumer Confidence Report Revised January, 2017 1 of 6 IX. Water Quality Data | Microbiological | Violation
Y or N | Number of
Samples
Present <u>OR</u>
Highest Level
Detected | Absent (A) or
Present (P)
<u>OR</u>
Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | |---|---------------------|--|--|------------|-------------|---|---| | Total Coliform Bacteria (System takes ≥ 40 monthly samples) 5% of monthly samples are positive; (System takes ≤ 40 monthly samples) 1 positive monthly sample | N | 0 | A/L | 0 | 0 | 1,2,3,4,5,6,7,
8,9,10,11,12,
2016 | Naturally Present in
Environment | | Fecal coliform and E. Coli
(TC Rule) | | | | 0 | 0 | | Human and animal
fecal waste | | Fecal Indicators
(E. coli, enterococci or coliphage)
(GW Rule) | | | | TT | n/a | | Human and animal fecal waste | | Total Organic Carbon (ppm) | | | | TT | n/a | | Naturally present in
the environment | | Turbidity (NTU), surface water only | | | | TT | n/a | | Soil Runoff | | Disinfectants | Violation
Y or N | Running
Annual
Average
(RAA) | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | | Chloramines (ppm) | | , , | | MRDL = 4 | MRDLG = 4 | | Water additive used to control microbes | | Chlorine (ppm) | N | 0.61 | L | MRDL = 4 | MRDLG = 4 | 1,2,3,4,5,6,7,
8,9,10,11,12,
2016 | Water additive used to control microbes | | Chloride dioxide (ppb) | | | | MRDL = 800 | MRDLG = 800 | | Water additive used to
control microbes | | Disinfection By-Products | Violation
Y or N | Running
Annual
Average
(RAA) <u>OR</u>
Highest Level
Detected | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | | Haloacetic Acids (ppb) (HAA5) | | 2 | L | 60 | n/a | | Byproduct of drinking
water disinfection | | Total Trihalomethanes (ppb)
(TTHM) | | 3 | L | 80 | n/a | | Byproduct of drinking
water disinfection | | Bromate (ppb) | | | | 10 | 0 | | Byproduct of drinking
water disinfection | | Chlorite (ppm) | | | | 1 | 0.8 | | Byproduct of drinking water disinfection | | Lead & Copper | Violation
Y or N | 90 th Percentile AND Number of Samples Over the AL | Range of All
Samples (L-H) | AL | ALG | Sample
Month &
Year | Likely Source of
Contamination | | Copper (ppm) | N | 90 th Percentile = 0.09 | L | AL = 1.3 | ALG = 1.3 | 07/2014 | Corrosion of
household plumbing
systems; erosion of
natural deposits | | Lead (ppb) | N | 90 th Percentile = 0.5 ppb | L | AL = 15 | 0 | 07/2014 | Corrosion of
household plumbing
systems; erosion of
natural deposits | | Radionuclides | Violation
Y or N | Running
Annual
Average
(RAA) <u>OR</u>
Highest Level
Detected | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | | Beta / photon emitters (mrem/yr) | | | | 4 | 0 | | Decay of natural and
man-made deposits | | Alpha emitters (pCi/L) | | | | 15 | 0 | | Erosion of natural deposits | | Combined Radium 226 & 228 (pCi/L) | | | | 5 | 0 | | Erosion of natural deposits | | Uranium (pCi/L) | | | | 30 | 0 | | Erosion of natural
deposits | | | Ĭ. | ı | <u> </u> | 1 | 1 | 2017 | l | Consumer Confidence Report Revised January, 2017 2 of 6 | Inorganic Chemicals
(IOC) | Violation
Y or N | Running
Annual
Average
(RAA) <u>OR</u>
Highest Level
Detected | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | |------------------------------|---------------------|--|-------------------------------|-----|------|---------------------------|---| | Antimony (ppb) | | | | 6 | 6 | | Discharge from
petroleum refineries;
fire retardants;
ceramics, electronics
and solder | | Arsenic (ppb) | | | | 10 | 0 | | Erosion of natural
deposits, runoff from
orchards, runoff from
glass and electronics
production wastes | | Asbestos (MFL) | | | | 7 | 7 | | Decay of asbestos
cement water mains;
Erosion of natural
deposits | | Barium (ppm) | | | | 2 | 2 | | Discharge of drilling
wastes; discharge from
metal refineries;
Erosion of natural
deposits | | Beryllium (ppb) | | | | 4 | 4 | | Discharge from metal
refineries and coal-
burning factories;
discharge from
electrical, aerospace,
and defense industries | | Cadmium (ppb) | | | | 5 | 5 | | Corrosion of
galvanized pipes;
natural deposits;
metal refineries;
runoff from waste
batteries and paints | | Chromium (ppb) | | | | 100 | 100 | | Discharge from steel
and pulp mills;
Erosion of natural
deposits | | Cyanide (ppb) | | | | 200 | 200 | | Discharge from
steel/metal factories;
Discharge from plastic
and fertilizer factories | | Fluoride (ppm) | | | | 4 | 4 | | Erosion of natural
deposits; water
additive which
promotes strong teeth;
discharge from
fertilizer and
aluminum factories | | Mercury (ppb) | | | | 2 | 2 | | Erosion of natural
deposits; Discharge
from refineries and
factories; Runoff from
landfills and cropland. | | Nitrate (ppm) | | | | 10 | 10 | | Runoff from fertilizer
use; leaching from
septic tanks, sewage;
erosion of natural
deposits | | Nitrite (ppm) | | | | 1 | 1 | | Runoff from
fertilizer use;
leaching from
septic tanks,
sewage; erosion of
natural deposits | | Selenium (ppb) | | | | 50 | 50 | | Discharge from
petroleum and
metal refineries;
erosion of natural
deposits; discharge
from mines | | Thallium (ppb) | | | | 2 | 0.5 | | Leaching from ore-
processing sites;
discharge from
electronics, glass,
and drug factories | Consumer Confidence Report Revised January, 2017 3 of 6 | Synthetic Organic
Chemicals (SOC) | Violation
Y or N | Running
Annual
Average
(RAA) <u>OR</u>
Highest Level
Detected | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | |--------------------------------------|---------------------|--|-------------------------------|-----|------|---------------------------|--| | 2,4-D (ppb) | | | | 70 | 70 | | Runoff from
herbicide used on
row crops | | 2,4,5-TP (Silvex) (ppb) | | | | 50 | 50 | | Residue of banned herbicide | | Acrylamide | | | | TT | 0 | | Added to water
during sewage /
wastewater
treatment | | Alachlor (ppb) | | | | 2 | 0 | | Runoff from
herbicide used on
row crops | | Atrazine (ppb) | | | | 3 | 3 | | Runoff from
herbicide used on
row crops | | Benzo (a) pyrene (PAH) (ppt) | | | | 200 | 0 | | Leaching from
linings of water
storage tanks and
distribution lines | | Carbofuran (ppb) | | | | 40 | 40 | | Leaching of soil
fumigant used on
rice and alfalfa | | Chlordane (ppb) | | | | 2 | 0 | | Residue of banned termiticide | | Dalapon (ppb) | | | | 200 | 200 | | Runoff from
herbicide used on
rights of way | | Di (2-ethylhexyl) adipate (ppb) | | | | 400 | 400 | | Discharge from chemical factories | | Di (2-ethylhexyl) phthalate (ppb) | | | | 6 | 0 | | Discharge from
rubber and
chemical factories | | Dibromochloropropane (p | | | | 200 | 0 | | Runoff/leaching
from soil fumigant
used on soybeans,
cotton, pineapples,
and orchards | | Dinoseb (ppb) | | | | 7 | 7 | | Runoff from
herbicide used on
soybeans and
vegetables | | Diquat (ppb) | | | | 20 | 20 | | Runoff from herbicide use | | Dioxin [2,3,7,8-TCDD] (ppq) | | | | 30 | 0 | | Emissions from
waste incineration
and other
combustion;
discharge from
chemical factories | | Endothall (ppb) | | | | 100 | 100 | | Runoff from herbicide use | | Endrin (ppb) | | | | 2 | 2 | | Residue of banned insecticide | | Epichlorohydrin | | | | TT | 0 | | Discharge from
industrial chemical
factories; an
impurity of some
water treatment
chemicals | | Ethylene dibromide (ppt) | | | | 50 | 0 | | Discharge from petroleum refineries | | Glyphosate (ppb) | | | | 700 | 700 | | Runoff from herbicide use | | Heptachlor (ppt) | | | | 400 | 0 | | Residue of banned temiticide | | Heptachlor epoxide (ppt) | | | | 200 | 0 | | Breakdown of heptachlor | | Hexachlorobenzene (ppb) | | | | 1 | 0 | | Discharge from metal refineries and | Consumer Confidence Report Revised January, 2017 4 of 6 | | | | | | | | agricultural chemical factories | |--|---------------------|--|-------------------------------|--------------------|--------------------|---------------------------|---| | Hexachlorocyclo pentadiene (ppb) | | | | 50 | 50 | | Discharge from chemical factories | | Lindane (ppt) | | | | 200 | 200 | | Runoff/leaching
from insecticide
used on cattle,
lumber, gardens | | Methoxychlor (ppb) | | | | 40 | 40 | | Runoff/leaching
from insecticide
used on fruits,
vegetables, alfalfa,
livestock | | Oxamyl [Vydate] (ppb) | | | | 200 | 200 | | Runoff/leaching
from insecticide
used on apples,
potatoes and
tomatoes | | PCBs [Polychlorinated biphenyls] (ppt) | | | | 500 | 0 | | Runoff from
landfills; discharge
of waste chemicals | | Pentachlorophenol (ppb) | | | | 1 | 0 | | Discharge from
wood preserving
factories | | Picloram (ppb) | | | | 500 | 500 | | Herbicide runoff | | Simazine (ppb) | | | | 4 | 4 | | Herbicide runoff | | Toxaphene (ppb) | | | | 3 | 0 | | Runoff/leaching
from insecticide
used on cotton and
cattle | | Volatile Organic Chemicals
(VOC) | Violation
Y or N | Running
Annual
Average
(RAA) <u>OR</u>
Highest Level
Detected | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | | Benzene (ppb) | | | | 5 | 0 | | Discharge from
factories; leaching
from gas storage
tanks and landfills | | Carbon tetrachloride (ppb) | | | | 5 | 0 | | Discharge from
chemical plants and
other industrial
activities | | Chlorobenzene (ppb) | | | | 100 | 100 | | Discharge from
chemical and
agricultural
chemical factories | | o-Dichlorobenzene (ppb) | | | | | | | Discharge from | | | | | | 600 | 600 | | industrial chemical factories | | p-Dichlorobenzene (ppb) | | | | 75 | 75 | | industrial chemical | | p-Dichlorobenzene (ppb) 1,2-Dichloroethane (ppb) | | | | | | | industrial chemical
factories
Discharge from
industrial chemical | | | | | | 75 | 75 | | industrial chemical factories Discharge from industrial chemical factories Discharge from industrial chemical | | 1,2-Dichloroethane (ppb) | | | | 75
5 | 75 | | industrial chemical factories Discharge from industrial chemical factories Discharge from industrial chemical factories Discharge from industrial chemical factories | | 1,2-Dichloroethane (ppb) 1,1-Dichloroethylene (ppb) | | | | 75
5
7 | 75
0
7 | | industrial chemical factories Discharge from industrial chemical | | 1,2-Dichloroethane (ppb) 1,1-Dichloroethylene (ppb) cis-1,2-Dichloroethylene (ppb) | | | | 75
5
7
70 | 75
0
7
70 | | industrial chemical factories Discharge from industrial chemical factories | Consumer Confidence Report Revised January, 2017 5 of 6 | | | | industrial chemical | |--|-----|---------|----------------------------------| | | | | factories | | Ethylbenzene (ppb) | 700 | 700 | Discharge from | | Editylochizene (ppo) | 700 | 700 | petroleum refineries | | | | | Discharge from | | Styrene (ppb) | 100 | 100 | rubber and plastic | | 41.7 | | | factories; leaching | | | | | from landfills | | T (11 (1.1 (1) | | 0 | Discharge from | | Tetrachloroethylene (ppb) | 5 | 0 | factories and dry | | | | | cleaners | | 1.2.4 Trichlorohonzono (nnh) | 70 | 70 | Discharge from textile-finishing | | 1,2,4-Trichlorobenzene (ppb) | /0 | /0 | factories | | | | | Discharge from | | | | | metal degreasing | | 1,1,1-Trichloroethane (ppb) | 200 | 200 200 | sites and other | | | | | factories | | | | | Discharge from | | 1,1,2-Trichloroethane (ppb) | 5 | 3 | industrial chemical | | | | | factories | | | | | Discharge from | | Trichloroethylene (ppb) | 5 | 0 | metal degreasing | | Themoroeutylene (ppo) | | U | sites and other | | | | | factories | | Toluene (ppm) | 1 | 1 | Discharge from | | топаене (ррні) | 1 | 1 | petroleum factories | | | | | Leaching from | | Vinyl Chloride (ppb) | | 0 | PVC piping; | | , and the state of | | | discharge from | | | | | chemical factories | | Y 1 () | 10 | 10 | Discharge from | | Xylenes (ppm) | 10 | 10 | petroleum or | | | | | chemical factories | # X. *Cryptosporidium* Monitoring (surface water systems only) | We detected <i>Cryptosporidium</i> in the finished water or source water. | We detected Cryptosporidium in | of our | samples tested. | |---|--------------------------------|--------|-----------------| | | | | | We have to provide additional treatment if Cryptosporidium is found at greater than 0.075 oocyst per liter. We believe it is important for you to know that *Cryptosporidium* may cause serious illness in immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders. These people should seek advice form their health care providers. #### XI. Stage 2 Disinfectants and Disinfection By-Products Rule Stage 2 DBP Rule required some systems to complete an Initial Distribution System Evaluation (IDSE) to characterize DBP levels in their distribution systems and identify locations to monitor DBPs for Stage 2 DBP Rule compliance. The following table summarizes the individual sample results for the IDSE standard monitoring performed in <2015> | Contaminant | Number of
Analyses | Minimum Level
Detected | Highest Level
Detected | |------------------------------------|-----------------------|---------------------------|---------------------------| | Haloacetic Acids (HAA5) (ppb) | 1 | 2 | 2 | | Total Trihalomethanes (TTHM) (ppb) | 1 | 3 | 3 | # XII. Violations | Type / Description | Compliance Period | Corrective Actions taken by PWS | |--------------------|-------------------|---------------------------------| An explanation of the violation(s) in the above table, the steps taken to resolve the violation(s) and any required health effects information are required to be included with this report. (Attach copy of Public Notice if available.) Consumer Confidence Report Revised January, 2017 6 of 6